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Data Structures and Algorithms Analysis 

1. Introduction to Data Structures and Algorithms Analysis 

A program is written in order to solve a problem. A solution to a problem actually 

consists of two things: 

 A way to organize the data 

 Sequence of steps to solve the problem 

 

The way data are organized in a computers memory is said to be Data Structure and the 

sequence of computational steps to solve a problem is said to be an algorithm. Therefore, 

a program is nothing but data structures plus algorithms. 

 

1.1. Introduction to Data Structures 

 

Given a problem, the first step to solve the problem is obtaining ones own abstract view, 

or model, of the problem. This process of modeling is called abstraction. 

 

 
The model defines an abstract view to the problem. This implies that the model focuses 

only on problem related stuff and that a programmer tries to define the properties of the 

problem.  

 

These properties include  

 The data which are affected and  

 The operations that are involved in the problem.  
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With abstraction you create a well-defined entity that can be properly handled. These 

entities define the data structure of the program.  

 

An entity with the properties just described is called an abstract data type (ADT).  

1.1.1. Abstract Data Types 

An ADT consists of an abstract data structure and operations. Put in other terms, an ADT 

is an abstraction of a data structure. 

 

The ADT specifies: 

1. What can be stored in the Abstract Data Type 

2. What operations can be done on/by the Abstract Data Type. 

For example, if we are going to model employees of an organization: 

 This ADT stores employees with their relevant attributes and discarding 

irrelevant attributes. 

 This ADT supports hiring, firing, retiring, … operations. 

 

A data structure is a language construct that the programmer has defined in order to 

implement an abstract data type.  

 

There are lots of formalized and standard Abstract data types such as Stacks, Queues, 

Trees, etc. 

 

Do all characteristics need to be modeled? 

Not at all 

 It depends on the scope of the model 

 It depends on the reason for developing the model 

1.1.2. Abstraction 

Abstraction is a process of classifying characteristics as relevant and irrelevant for the 

particular purpose at hand and ignoring the irrelevant ones. 

Applying abstraction correctly is the essence of successful programming 

How do data structures model the world or some part of the world? 

 The value held by a data structure represents some specific characteristic of the 

world 

 The characteristic being modeled restricts the possible values held by a data 

structure 

 The characteristic being modeled restricts the possible operations to be performed 

on the data structure. 

Note: Notice the relation between characteristic, value, and data structures 

Where are algorithms, then?  
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1.2. Algorithms 

An algorithm is a well-defined computational procedure that takes some value or a set of 

values as input and produces some value or a set of values as output. Data structures 

model the static part of the world. They are unchanging while the world is changing. In 

order to model the dynamic part of the world we need to work with algorithms. 

Algorithms are the dynamic part of a program‟s world model.  

An algorithm transforms data structures from one state to another state in two ways: 

 An algorithm may change the value held by a data structure 

 An algorithm may change the data structure itself 

 

The quality of a data structure is related to its ability to successfully model the 

characteristics of the world. Similarly, the quality of an algorithm is related to its ability 

to successfully simulate the changes in the world.  

 

However, independent of any particular world model, the quality of data structure and 

algorithms is determined by their ability to work together well. Generally speaking, 

correct data structures lead to simple and efficient algorithms and correct algorithms lead 

to accurate and efficient data structures. 

 

1.2.1. Properties of an algorithm 

 

• Finiteness: Algorithm must complete after a finite number of steps. 

• Definiteness: Each step must be clearly defined, having one and only one 

interpretation. At each point in computation, one should be able to tell exactly 

what happens next. 

• Sequence: Each step must have a unique defined preceding and succeeding 

step. The first step (start step) and last step (halt step) must be clearly noted. 

• Feasibility: It must be possible to perform each instruction. 

• Correctness: It must compute correct answer all possible legal inputs. 

• Language Independence: It must not depend on any one programming 

language. 

• Completeness: It must solve the problem completely. 

• Effectiveness: It must be possible to perform each step exactly and in a finite 

amount of time. 

• Efficiency: It must solve with the least amount of computational resources 

such as time and space. 

• Generality: Algorithm should be valid on all possible inputs. 
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• Input/Output: There must be a specified number of input values, and one or 

more result values. 

1.2.2. Algorithm Analysis Concepts 

Algorithm analysis refers to the process of determining how much computing time and 

storage that algorithms will require. In other words, it‟s a process of predicting the 

resource requirement of algorithms in a given environment. 

In order to solve a problem, there are many possible algorithms. One has to be able to 

choose the best algorithm for the problem at hand using some scientific method. To 

classify some data structures and algorithms as good, we need precise ways of analyzing 

them in terms of resource requirement. The main resources are: 

 Running Time 

 Memory Usage 

 Communication Bandwidth 

Running time is usually treated as the most important since computational time is the 

most precious resource in most problem domains. 

There are two approaches to measure the efficiency of algorithms: 

• Empirical: Programming competing algorithms and trying them on different 

instances. 

• Theoretical: Determining the quantity of resources required mathematically 

(Execution time, memory space, etc.) needed by each algorithm. 

However, it is difficult to use actual clock-time as a consistent measure of an algorithm‟s 

efficiency, because clock-time can vary based on many things. For example, 

 Specific processor speed 

 Current processor load 

 Specific data for a particular run of the program 

o Input Size 

o Input Properties 

 Operating Environment 

 

Accordingly, we can analyze an algorithm according to the number of operations 

required, rather than according to an absolute amount of time involved. This can show 

how an algorithm‟s efficiency changes according to the size of the input. 

 

1.2.3. Complexity Analysis 
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Complexity Analysis is the systematic study of the cost of computation, measured either 

in time units or in operations performed, or in the amount of storage space required. 

 

The goal is to have a meaningful measure that permits comparison of algorithms 

independent of operating platform. 

There are two things to consider: 

 Time Complexity: Determine the approximate number of operations required to 

solve a problem of size n. 

 Space Complexity: Determine the approximate memory required to solve a 

problem of size n. 

 

Complexity analysis involves two distinct phases: 

 Algorithm Analysis: Analysis of the algorithm or data structure to produce a 

function T (n) that describes the algorithm in terms of the operations performed in 

order to measure the complexity of the algorithm. 

 Order of Magnitude Analysis: Analysis of the function T (n) to determine the 

general complexity category to which it belongs. 

 

There is no generally accepted set of rules for algorithm analysis. However, an exact 

count of operations is commonly used. 

 

1.2.3.1. Analysis Rules: 
1. We assume an arbitrary time unit. 

2. Execution of one of the following operations takes time 1: 

 Assignment Operation 

 Single Input/Output Operation 

 Single Boolean Operations 

 Single Arithmetic Operations 

 Function Return 

3. Running time of a selection statement (if, switch) is the time for the condition 

evaluation + the maximum of the running times for the individual clauses in the 

selection. 

4. Loops: Running time for a loop is equal to the running time for the statements 

inside the loop * number of iterations.  

The total running time of a statement inside a group of nested loops is the running 

time of the statements multiplied by the product of the sizes of all the loops. 

For nested loops, analyze inside out. 

 Always assume that the loop executes the maximum number of iterations 

possible. 

5. Running time of a function call is 1 for setup + the time for any parameter 

calculations + the time required for the execution of the function body. 

Examples: 

1. int count(){  

    int k=0;  

    cout<< “Enter an integer”; 

    cin>>n; 
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    for (i=0;i<n;i++) 

k=k+1; 

    return 0;} 

 Time Units to Compute 

------------------------------------------------- 

1 for the assignment statement:   int k=0 

1 for the output statement. 

1 for the input statement. 

In the for loop: 

 1 assignment, n+1 tests, and n increments. 

 n loops of 2 units for an assignment, and an   addition. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+1+1+(1+n+1+n)+2n+1 = 4n+6 = O(n) 
 

2. int total(int n) 

    { 

    int sum=0; 

    for (int i=1;i<=n;i++) 

          sum=sum+1; 

     return sum; 

     } 

Time Units to Compute 

------------------------------------------------- 

1 for the assignment statement:   int sum=0 

In the for loop: 

 1 assignment, n+1 tests, and n increments. 

 n loops of 2 units for an assignment, and an   addition. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+ (1+n+1+n)+2n+1 = 4n+4 = O(n) 
 

3. void func() 

    {    

    int x=0; 

    int i=0; 

    int j=1; 

    cout<< “Enter an Integer value”; 

    cin>>n; 

    while (i<n){ 

        x++; 

         i++; 

     } 

    while (j<n) 

     { 

         j++;     
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     } 

  } 

 

Time Units to Compute 

------------------------------------------------- 

1 for the first assignment statement:  x=0; 

1 for the second assignment statement: i=0; 

1 for the third assignment statement: j=1; 

1 for the output statement. 

1 for the input statement. 

In the first while loop: 

 n+1 tests 

 n loops of 2 units for the two increment (addition) operations 

In the second while loop: 

 n tests 

 n-1 increments 

------------------------------------------------------------------- 

T (n)= 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5 = O(n) 
 

4. int sum (int n) 

   { 

    int partial_sum = 0; 

    for (int i = 1; i <= n; i++) 

 partial_sum = partial_sum +(i * i * i); 

    return partial_sum; 

   } 

 

 

Time Units to Compute 

------------------------------------------------- 

 1 for the assignment. 

 1 assignment, n+1 tests, and n increments. 

 n loops of 4 units for an assignment, an   addition, and two multiplications. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+(1+n+1+n)+4n+1 = 6n+4 = O(n) 

 

1.2.3.2. Formal Approach to Analysis 
 

In the above examples we have seen that analysis so complex. However, it can be 

simplified by using some formal approach in which case we can ignore initializations, 

loop control, and book keeping. 

 

For Loops: Formally 
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• In general, a for loop translates to a summation. The index and bounds of the 

summation are the same as the index and bounds of the for loop. 

for (int i = 1; i <= N; i++) {

sum = sum+i;

}

N
N

i


1

1

 

• Suppose we count the number of additions that are done. There is 1 addition per 

iteration of the loop, hence N additions in total. 

 

Nested Loops: Formally 

• Nested for loops translate into multiple summations, one for each for loop. 

 

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= M; j++) {

sum = sum+i+j;

}

}
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• Again, count the number of additions. The outer summation is for the outer for 

loop. 

 

Consecutive Statements: Formally 

• Add the running times of the separate blocks of your code 

for (int i = 1; i <= N; i++) {

sum = sum+i;

}

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}

}
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Conditionals: Formally 

• If (test) s1 else s2: Compute the maximum of the running time for s1 and s2. 
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if (test == 1) {

for (int i = 1; i <= N; i++) {

sum = sum+i;

}}

else for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}}
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Example: 

 

Suppose we have hardware capable of executing 10
6
 instructions per second. How long 

would it take to execute an algorithm whose complexity function was: 

T (n) = 2n
2
 on an input size of n=10

8
? 

The total number of operations to be performed would be T (10
8
): 

 

T(10
8
) = 2*(10

8
)
2
 =2*10

16
 

The required number of seconds    

required would be given by    

 T(10
8
)/10

6
 so: 

 

Running time =2*10
16

/10
6
 = 2*10

10
 

The number of seconds per day is  86,400 so this is about 231,480 days (634 years). 

 

Exercises 

 

Determine the run time equation and complexity of each of the following code segments. 

 

1. for (i=0;i<n;i++) 

         for (j=0;j<n; j++) 

              sum=sum+i+j; 

What is the value of sum if n=100? 

 

2. for(int i=1; i<=n; i++) 

         for (int j=1; j<=i; j++) 

               sum++; 

What is the value of the sum if n=20? 

 

3. int  k=0; 

    for (int i=0; i<n; i++) 

       for (int j=i; j<n; j++) 

          k++; 

What is the value of k when n is equal to 20? 

4. int k=0; 

    for (int i=1; i<n; i*=2) 

        for(int j=1; j<n; j++) 
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              k++; 

What is the value of k when n is equal to 20? 

 

5. int x=0; 

for(int i=1;i<n;i=i+5) 

      x++; 

What is the value of x when n=25? 

 

 

6. int x=0; 

for(int k=n;k>=n/3;k=k-5) 

     x++; 

What is the value of x when n=25? 

 

7. int x=0; 

for (int i=1; i<n;i=i+5) 

    for (int k=n;k>=n/3;k=k-5) 

        x++; 

What is the value of x when n=25? 

 

8. int x=0; 

for(int i=1;i<n;i=i+5) 

     for(int j=0;j<i;j++) 

          for(int k=n;k>=n/2;k=k-3) 

                 x++; 

 

What is the correct big-Oh Notation for the above code segment? 

 

1.3. Measures of Times 

 

In order to determine the running time of an algorithm it is possible to define three 

functions Tbest(n), Tavg(n) and Tworst(n) as the best, the average and the worst case running 

time of the algorithm respectively.  

 

Average Case (Tavg): The amount of time the algorithm takes on an "average" set of 

inputs.  

Worst Case (Tworst): The amount of time the algorithm takes on the worst possible set of 

inputs.  

Best Case (Tbest): The amount of time the algorithm takes on the smallest possible set of 

inputs. 

 

We are interested in the worst-case time, since it provides a bound for all input – this is 

called the “Big-Oh” estimate. 
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1.4. Asymptotic Analysis 

Asymptotic analysis is concerned with how the running time of an algorithm increases 

with the size of the input in the limit, as the size of the input increases without bound. 

There are five notations used to describe a running time function. These are: 

 Big-Oh Notation (O) 

 Big-Omega Notation () 

 Theta Notation () 

 Little-o Notation (o) 

 Little-Omega Notation () 

1.4.1. The Big-Oh Notation 

Big-Oh notation is a way of comparing algorithms and is used for computing the 

complexity of algorithms; i.e., the amount of time that it takes for computer program to 

run . It‟s only concerned with what happens for very a large value of n. Therefore only 

the largest term in the expression (function) is needed. For example, if the number of 

operations in an algorithm is n
2
 – n, n is insignificant compared to n

2
 for large values of 

n. Hence the n term is ignored. Of course, for small values of n, it may be important. 

However, Big-Oh is mainly concerned with large values of n.  

Formal Definition: f (n)= O (g (n)) if there exist c, k ∊ ℛ+ 
such that for all n≥ k, f (n) ≤ 

c.g (n). 

Examples: The following points are facts that you can use for Big-Oh problems: 

 1<=n for all n>=1 

 n<=n
2
 for all n>=1 

 2
n
 <=n! for all n>=4 

 log2n<=n for all n>=2 

 n<=nlog2n for all n>=2 

1. f(n)=10n+5 and g(n)=n. Show that f(n) is O(g(n)). 

To show that f(n) is O(g(n)) we must show that constants c and k such that  

f(n) <=c.g(n) for all n>=k 

Or 10n+5<=c.n for all n>=k 

Try c=15. Then we need to show that 10n+5<=15n 

Solving for n we get: 5<5n or 1<=n. 
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So f(n) =10n+5 <=15.g(n) for all n>=1. 

(c=15,k=1). 

2. f(n) = 3n
2
 +4n+1. Show that f(n)=O(n

2
). 

4n <=4n
2
 for all n>=1 and 1<=n

2
 for all n>=1 

3n
2
 +4n+1<=3n

2
+4n

2
+n

2
 for all n>=1 

              <=8n
2
 for all n>=1 

So we have shown that f(n)<=8n
2
 for all n>=1 

Therefore, f (n) is O(n
2
)  (c=8,k=1) 

Typical Orders 

Here is a table of some typical cases. This uses logarithms to base 2, but these are simply 

proportional to logarithms in other base. 

  

N O(1) O(log n) O(n) O(n log n) O(n
2
) O(n

3
) 

1 1 1 1 1 1 1 

2 1 1 2 2 4 8 

4 1 2 4 8 16 64 

8 1 3 8 24 64 512 

16 1 4 16 64 256 4,096 

1024 1 10 1,024 10,240 1,048,576 1,073,741,824 

 

Demonstrating that a function f(n) is big-O of a function g(n) requires that we find 

specific constants c and k for which the inequality holds (and show that the inequality 

does in fact hold). 

Big-O expresses an upper bound on the growth rate of a function, for sufficiently large 

values of n. 

 

An upper bound is the best algorithmic solution that has been found for a problem. 

“ What is the best that we know we can do?” 

Exercise:  
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f(n) = (3/2)n
2
+(5/2)n-3  

Show that f(n)= O(n
2
) 

In simple words, f (n) =O(g(n)) means that the growth rate of f(n) is less than or equal to 

g(n). 

1.4.1.1. Big-O Theorems 

For all the following theorems, assume that f(n) is a function of n and that k is an 

arbitrary constant. 

 

Theorem 1: k is O(1) 

Theorem 2: A polynomial is O(the term containing the highest power of n). 

Polynomial‟s growth rate is determined by the leading term 

 If  f(n)  is a polynomial of degree d, then  f(n)  is O(n
d
) 

In general, f(n) is big-O of the dominant term of f(n). 

 

Theorem 3: k*f(n) is O(f(n)) 

Constant factors may be ignored 

 E.g. f(n) =7n
4
+3n

2
+5n+1000 is O(n

4
) 

 

Theorem 4(Transitivity): If f(n) is O(g(n))and g(n) is O(h(n)), then f(n) is O(h(n)). 

  

Theorem 5: For any base b, logb(n) is O(logn). 

All logarithms grow at the same rate 

 logbn  is O(logdn) b, d > 1 

 

Theorem 6: Each of the following functions is big-O of its successors: 

 k 

 logbn 

n 

nlogbn 

n
2
 

n to higher powers 

2
n 

3
n
 

larger constants to the nth power 
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n! 

n
n
 

f(n)= 3nlogbn + 4 logbn+2 is O(nlogbn) and )(n
2
) and O(2

n
) 

1.4.1.2. Properties of the O Notation 

Higher powers grow faster 

•n
r
  O( n

s
)  if   0 <= r <=  s 

Fastest growing term dominates a sum 

• If f(n)  is O(g(n)),  then  f(n) + g(n) is O(g) 

E.g   5n
4
  + 6n3   is   O (n

4
) 

n 
b > 1 and k >= 0 

           E.g. n
20

   is  O( 1.05
n
) 

Logarithms grow more slowly than powers 

•logb   

E.g. log2n   is O( n
0.5

) 

1.4.2. Big-Omega Notation 

Just as O-notation provides an asymptotic upper bound on a function,  notation 

provides an asymptotic lower bound. 

Formal Definition: A function f(n) is ( g (n)) if there exist constants c and k ∊ ℛ+   

such that  

f(n) >=c. g(n) for all n>=k. 

 

f(n)= ( g (n)) means that f(n) is greater than or equal to some constant multiple of g(n) 

for all values of n greater than or equal to some k. 

Example: If f(n) =n
2, 

then f(n)= ( n) 

In simple terms, f(n)= ( g (n)) means that the growth rate of f(n) is greater that or equal 

to g(n). 

1.4.3. Theta Notation 
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A function f (n) belongs to the set of  (g(n)) if there exist positive constants c1 and c2 

such that it can be sandwiched between c1.g(n) and c2.g(n), for sufficiently large values 

of n.  

Formal Definition: A function f (n) is  (g(n)) if it is both O( g(n) ) and  ( g(n) ). In 

other words, there exist constants c1, c2, and k >0 such that c1.g (n)<=f(n)<=c2. g(n) for 

all n >= k 

If f(n)=  (g(n)), then g(n) is an asymptotically tight bound for f(n). 

In simple terms, f(n)=  (g(n)) means that f(n) and g(n) have the same rate of growth. 

Example: 

1. If f(n)=2n+1, then f(n) =  (n)  

2. f(n) =2n
2 

then 

    f(n)=O(n
4
) 

    f(n)=O(n
3
) 

   f(n)=O(n
2
)  

All these are technically correct, but the last expression is the best and tight one. Since 

2n
2 

and n
2
 have the same growth rate, it can be written as f(n)= (n

2
). 

1.4.4. Little-o Notation 

Big-Oh notation may or may not be asymptotically tight, for example: 

2n
2
 = O(n

2
) 

      =O(n
3
) 

f(n)=o(g(n)) means for all c>0 there exists some k>0 such that f(n)<c.g(n) for all n>=k. 

Informally, f(n)=o(g(n)) means f(n) becomes insignificant relative to g(n) as n approaches 

infinity. 

Example: f(n)=3n+4 is o(n
2
) 

In simple terms, f(n) has less growth rate compared to g(n). 

g(n)= 2n
2
 g(n) =o(n

3
), O(n

2
), g(n) is not o(n

2
). 
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1.4.5. Little-Omega ( notation) 

Little-omega () notation is to big-omega () notation as little-o notation is to Big-Oh 

notation. We use  notation to denote a lower bound that is not asymptotically tight. 

Formal Definition: f(n)=  (g(n)) if there exists a constant no>0 such that 0<= c. 

g(n)<f(n) for all n>=k. 

Example: 2n
2
=(n) but it‟s not (n). 

1.5. Relational Properties of the Asymptotic Notations 

Transitivity  

• if f(n)=(g(n)) and g(n)= (h(n)) then f(n)=(h(n)), 

• if f(n)=O(g(n)) and g(n)= O(h(n)) then f(n)=O(h(n)), 

• if f(n)=(g(n)) and g(n)= (h(n)) then f(n)= (h(n)), 

• if f(n)=o(g(n)) and g(n)= o(h(n)) then f(n)=o(h(n)), and 

• if f(n)= (g(n)) and g(n)= (h(n)) then f(n)= (h(n)). 

Symmetry 

• f(n)=(g(n)) if and only if g(n)=(f(n)). 

Transpose symmetry 

• f(n)=O(g(n)) if and only if g(n)=(g(n), 

• f(n)=o(g(n)) if and only if g(n)=(g(n)). 

Reflexivity 

• f(n)=(f(n)), 

• f(n)=O(f(n)), 

• f(n)=(f(n)). 

2. Simple Sorting and Searching Algorithms 

2.1. Searching 

Searching is a process of looking for a specific element in a list of items or determining 

that the item is not in the list. There are two simple searching algorithms: 

• Sequential Search, and 
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• Binary Search 

2.1.1. Linear Search (Sequential Search) 

Pseudocode 

Loop through the array starting at the first element until the value of target matches one 

of the array elements. 

If a match is not found, return –1. 

Time is proportional to the size of input (n) and we call this time complexity O(n). 

Example Implementation: 

int Linear_Search(int list[], int key) 

{ 

int index=0; 

int found=0; 

do{ 

if(key==list[index]) 

     found=1; 

else 

    index++; 

}while(found==0&&index<n); 

if(found==0) 

     index=-1; 

return index; 

} 

2.1.2. Binary Search 

This searching algorithms works only on an ordered list.  

The basic idea is: 

• Locate midpoint of array to search 

• Determine if target is in lower half or upper half of an array. 

o If in lower half, make this half the array to search 

o If in the upper half, make this half the array to search 

• Loop back to step 1 until the size of the array to search is one, and this element 

does not match, in which case return –1. 

The computational time for this algorithm is proportional to log
2
 n. Therefore the time 

complexity is O(log n) 
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Example Implementation: 

int Binary_Search(int list[],int k) 

{ 

int left=0; 

int right=n-1; 

int found=0; 

do{ 

mid=(left+right)/2; 

if(key==list[mid]) 

     found=1; 

else{ 

      if(key<list[mid]) 

      right=mid-1; 

      else 

left=mid+1; 

       } 

}while(found==0&&left<right); 

if(found==0) 

   index=-1; 

else 

   index=mid; 

return index; 

} 

2.2. Sorting Algorithms 

Sorting is one of the most important operations performed by computers. Sorting is a 

process of reordering a list of items in either increasing or decreasing order. The 

following are simple sorting algorithms used to sort small-sized lists.  

• Insertion Sort 

• Selection Sort 

• Bubble Sort 
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2.2.1. Insertion Sort 

The insertion sort works just like its name suggests - it inserts each item into its proper 

place in the final list. The simplest implementation of this requires two list structures - the 

source list and the list into which sorted items are inserted. To save memory, most 

implementations use an in-place sort that works by moving the current item past the 

already sorted items and repeatedly swapping it with the preceding item until it is in 

place.  

It's the most instinctive type of sorting algorithm. The approach is the same approach that 

you use for sorting a set of cards in your hand. While playing cards, you pick up a card, 

start at the beginning of your hand and find the place to insert the new card, insert it and 

move all the others up one place. 

Basic Idea: 

Find the location for an element and move all others up, and insert the element. 

The process involved in insertion sort is as follows: 

1. The left most value can be said to be sorted relative to itself. Thus, we don‟t need 

to do anything. 

2. Check to see if the second value is smaller than the first one. If it is, swap these 

two values. The first two values are now relatively sorted. 

3. Next, we need to insert the third value in to the relatively sorted portion so that 

after insertion, the portion will still be relatively sorted. 

4. Remove the third value first. Slide the second value to make room for insertion. 

Insert the value in the appropriate position. 

5. Now the first three are relatively sorted.  

6. Do the same for the remaining items in the list. 

Implementation 

void insertion_sort(int list[]){ 

int temp; 

for(int i=1;i<n;i++){ 

 temp=list[i]; 

         for(int j=i; j>0 && temp<list[j-1];j--) 

               { // work backwards through the array finding where temp should go 

                 list[j]=list[j-1]; 

                  list[j-1]=temp; 

         }//end of inner loop 

        }//end of outer loop 

}//end of insertion_sort 
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Analysis  

How many comparisons?  

   1+2+3+…+(n-1)= O(n
2
) 

How many swaps? 

    1+2+3+…+(n-1)= O(n
2
) 

How much space? 

 In-place algorithm 

2.2.2. Selection Sort 

Basic Idea: 

 Loop through the array from i=0 to n-1. 

 Select the smallest element in the array from i to n 

 Swap this value with value at position i. 

Implementation: 

void selection_sort(int list[]) 

{ 

int i,j, smallest; 

for(i=0;i<n;i++){ 

       smallest=i; 

    for(j=i+1;j<n;j++){ 

       if(list[j]<list[smallest]) 

             smallest=j; 

         }//end of inner loop 

          temp=list[smallest]; 

 list[smallest]=list[i]; 

 list[i]=temp; 

         } //end of outer loop 

}//end of selection_sort 
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Analysis 

How many comparisons? 

(n-1)+(n-2)+…+1= O(n
2
) 

How many swaps? 

n=O(n) 

How much space? 

 In-place algorithm 

2.2.3. Bubble Sort 

Bubble sort is the simplest algorithm to implement and the slowest algorithm on very 

large inputs. 

Basic Idea: 

 Loop through array from i=0 to n and swap adjacent elements if they are out of 

order. 

 

Implementation: 

void bubble_sort(list[]) 

{ 

 int i,j,temp; 

 for(i=0;i<n; i++){ 

      for(j=n-1;j>i; j--){ 

            if(list[j]<list[j-1]){ 

      temp=list[j]; 

  list[j]=list[j-1]; 

  list[j-1]=temp; 

}//swap adjacent elements 

    }//end of inner loop 

}//end of outer loop 

}//end of bubble_sort 

 

Analysis of Bubble Sort 

How many comparisons? 

(n-1)+(n-2)+…+1= O(n
2
) 
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How many swaps? 

(n-1)+(n-2)+…+1= O(n
2
) 

Space? 

 In-place algorithm. 

General Comments 

Each of these algorithms requires n-1 passes: each pass places one item in its correct 

place. The i
th

 pass makes either i or n - i comparisons and moves. So:  

 

or O(n
2
). Thus these algorithms are only suitable for small problems where their simple 

code makes them faster than the more complex code of the O(n logn) algorithm. As a rule 

of thumb, expect to find an O(n logn) algorithm faster for n>10 - but the exact value 

depends very much on individual machines!. 

Empirically it‟s known that Insertion sort is over twice as fast as the bubble sort and is 

just as easy to implement as the selection sort. In short, there really isn't any reason to use 

the selection sort - use the insertion sort instead.  

If you really want to use the selection sort for some reason, try to avoid sorting lists of 

more than a 1000 items with it or repetitively sorting lists of more than a couple hundred 

items.  

3. Data Structures 

3.1. Structures 

Structures are aggregate data types built using elements of primitive data types. 

Structure are defined using the struct keyword: 

E.g.  struct Time{ 

   int hour; 

  int minute; 

  int second; 

         };  

http://linux.wku.edu/~lamonml/algor/sort/insertion.html
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The struct keyword creates a new user defined data type that is used to declare variables 

of an aggregate data type. 

Structure variables are declared like variables of other types. 

Syntax: struct <structure tag> <variable name>; 

E.g.  struct Time timeObject,   

        struct Time *timeptr; 

3.1.1. Accessing Members of Structure Variables 

The Dot operator (.): to access data members of structure variables. 

The Arrow operator (->): to access data members of pointer variables pointing to the 

structure.  

E.g. Print member hour of timeObject and timeptr. 

 cout<< timeObject.hour; or 

            cout<<timeptr->hour; 

TIP: timeptr->hour is the same as (*timeptr).hour. 

The parentheses is required since (*) has lower precedence than (.). 

3.1.2. Self-Referential Structures 

Structures can hold pointers to instances of themselves. 

struct list{ 

 char name[10]; 

 int count; 

struct list *next; 

}; 

However, structures cannot contain instances of themselves. 

3.2. Singly Linked Lists 

Linked lists are the most basic self-referential structures. Linked lists allow you to have a 

chain of structs with related data.  
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Array vs. Linked lists 

Arrays are simple and fast but we must specify their size at construction time. This has its 

own drawbacks. If you construct an array with space for n, tomorrow you may need 

n+1.Here comes a need for a more flexible system? 

Advantages of Linked Lists 

Flexible space use by dynamically allocating space for each element as needed. This 

implies that one need not know the size of the list in advance. Memory is efficiently 

utilized.  

A linked list is made up of a chain of nodes. Each node contains: 

• the data item, and  

• a pointer to the next node 

3.2.1. Creating Linked Lists in C++ 
 

A linked list is a data structure that is built from structures and pointers. It forms a chain 

of "nodes" with pointers representing the links of the chain and holding the entire thing 

together. A linked list can be represented by a diagram like this one:  

 
This linked list has four nodes in it, each with a link to the next node in the series. The 

last node has a link to the special value NULL, which any pointer (whatever its type) can 

point to, to show that it is the last link in the chain. There is also another special pointer, 

called Start (also called head), which points to the first link in the chain so that we can 

keep track of it.  

 

3.2.2. Defining the data structure for a linked list 
 

The key part of a linked list is a structure, which holds the data for each node (the name, 

address, age or whatever for the items in the list), and, most importantly, a pointer to the 

next node. Here we have given the structure of a typical node:  

struct node 

  {  char name[20];    // Name of up to 20 letters 

     int age 

     float height;     // In metres 

     node *nxt;// Pointer to next node 

  }; 



 25 

struct node *start_ptr = NULL; 

 

The important part of the structure is the line before the closing curly brackets. This gives 

a pointer to the next node in the list. This is the only case in C++ where you are allowed 

to refer to a data type (in this case node) before you have even finished defining it!  

We have also declared a pointer called start_ptr that will permanently point to the start of 

the list. To start with, there are no nodes in the list, which is why start_ptr is set to NULL.  

 

3.2.3. Adding a node to the list 
 

The first problem that we face is how to add a node to the list. For simplicity's sake, we 

will assume that it has to be added to the end of the list, although it could be added 

anywhere in the list (a problem we will deal with later on).  

 

Firstly, we declare the space for a pointer item and assign a temporary pointer to it. This 

is done using the new statement as follows:  

 

temp = new node;  

 
 

We can refer to the new node as *temp, i.e. "the node that temp points to". When the 

fields of this structure are referred to, brackets can be put round the *temp part, as 

otherwise the compiler will think we are trying to refer to the fields of the pointer. 

Alternatively, we can use the arrow pointer notation.  

 

That's what we shall do here.  

 

Having declared the node, we ask the user to fill in the details of the person, i.e. the 

name, age, address or whatever:  

 

cout << "Please enter the name of the person: "; 

cin >> temp->name; 

cout << "Please enter the age of the person : "; 

cin >> temp->age; 

cout << "Please enter the height of the person : "; 

cin >> temp->height; 

temp->nxt = NULL; 

 

The last line sets the pointer from this node to the next to NULL, indicating that this 

node, when it is inserted in the list, will be the last node. Having set up the information, 

we have to decide what to do with the pointers. Of course, if the list is empty to start 
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with, there's no problem - just set the Start pointer to point to this node (i.e. set it to the 

same value as temp):  

if (start_ptr == NULL) 

    start_ptr = temp; 

 

It is harder if there are already nodes in the list. In this case, the secret is to declare a 

second pointer, temp2, to step through the list until it finds the last node.  

 
 

temp2 = start_ptr; 

   // We know this is not NULL - list not empty! 

while (temp2->nxt != NULL) 

  {  temp2 = temp2->nxt;   // Move to next link in chain 

  } 

The loop will terminate when temp2 points to the last node in the chain, and it knows 

when this happened because the nxt pointer in that node will point to NULL. When it has 

found it, it sets the pointer from that last node to point to the node we have just declared:  

temp2->nxt = temp; 

 
The link temp2->nxt in this diagram is the link joining the last two nodes. The full code 

for adding a node at the end of the list is shown below, in its own little function:  

void add_node_at_end () 

  {  node *temp, *temp2;   // Temporary pointers 

 

     // Reserve space for new node and fill it with data 

     temp = new node; 

     cout << "Please enter the name of the person: "; 

     cin >> temp->name; 

     cout << "Please enter the age of the person : "; 

     cin >> temp->age; 

     cout << "Please enter the height of the person : "; 
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     cin >> temp->height; 

     temp->nxt = NULL; 

 

     // Set up link to this node 

     if (start_ptr == NULL) 

         start_ptr = temp; 

     else 

       { temp2 = start_ptr; 

         // We know this is not NULL - list not empty! 

         while (temp2->nxt != NULL) 

           {  temp2 = temp2->nxt; 

              // Move to next link in chain 

           } 

         temp2->nxt = temp; 

       } 

  } 

3.2.4. Displaying the list of nodes 
 

Having added one or more nodes, we need to display the list of nodes on the screen. This 

is comparatively easy to do. Here is the method:  

1. Set a temporary pointer to point to the same thing as the start pointer.  

2. If the pointer points to NULL, display the message "End of list" and stop.  

3. Otherwise, display the details of the node pointed to by the start pointer.  

4. Make the temporary pointer point to the same thing as the nxt pointer of the node 

it is currently indicating.  

5. Jump back to step 2.  

The temporary pointer moves along the list, displaying the details of the nodes it comes 

across. At each stage, it can get hold of the next node in the list by using the nxt pointer 

of the node it is currently pointing to. Here is the C++ code that does the job:  

temp = start_ptr; 

do 

  {  if (temp == NULL) 

       cout << "End of list" << endl; 

     else 

       {  // Display details for what temp points to 

          cout << "Name : " << temp->name << endl; 

          cout << "Age : " << temp->age << endl; 

          cout << "Height : " << temp->height << endl; 

          cout << endl;       // Blank line 

 

          // Move to next node (if present) 

          temp = temp->nxt; 

       } 

  } while (temp != NULL); 
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Check through this code, matching it to the method listed above. It helps if you draw a 

diagram on paper of a linked list and work through the code using the diagram.  

 

3.2.5. Navigating through the list 
 

One thing you may need to do is to navigate through the list, with a pointer that moves 

backwards and forwards through the list, like an index pointer in an array. This is 

certainly necessary when you want to insert or delete a node from somewhere inside the 

list, as you will need to specify the position.  

 

We will call the mobile pointer current. First of all, it is declared, and set to the same 

value as the start_ptr pointer:  

node *current; 

current = start_ptr; 

Notice that you don't need to set current equal to the address of the start pointer, as they 

are both pointers. The statement above makes them both point to the same thing:  

 
 

It's easy to get the current pointer to point to the next node in the list (i.e. move from left 

to right along the list). If you want to move current along one node, use the nxt field of 

the node that it is pointing to at the moment:  

current = current->nxt; 

 

In fact, we had better check that it isn't pointing to the last item in the list. If it is, then 

there is no next node to move to:  

if (current->nxt == NULL) 

     cout << "You are at the end of the list." << endl; 

else 

     current = current->nxt; 

 

Moving the current pointer back one step is a little harder. This is because we have no 

way of moving back a step automatically from the current node. The only way to find the 

node before the current one is to start at the beginning, work our way through and stop 

when we find the node before the one we are considering at the moment. We can tell 

when this happens, as the nxt pointer from that node will point to exactly the same place 

in memory as the current pointer (i.e. the current node).  

 

 

 

 
    

previous current 
Start 

NULL 

Sto

p 

here 
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First of all, we had better check to see if the current node is also first the one. If it is, then 

there is no "previous" node to point to. If not, check through all the nodes in turn until we 

detect that we are just behind the current one (Like a pantomime - "behind you!")  

if (current == start_ptr) 

     cout << "You are at the start of the list" << endl; 

else 

   { node *previous;     // Declare the pointer 

     previous = start_ptr; 

 

     while (previous->nxt != current) 

        {     previous = previous->nxt; 

        } 

     current = previous; 

   } 

 

The else clause translates as follows: Declare a temporary pointer (for use in this else 

clause only). Set it equal to the start pointer. All the time that it is not pointing to the node 

before the current node, move it along the line. Once the previous node has been found, 

the current pointer is set to that node - i.e. it moves back along the list.  

 

Now that you have the facility to move back and forth, you need to do something with it. 

Firstly, let's see if we can alter the details for that particular node in the list:  

cout << "Please enter the new name of the person: "; 

cin >> current->name; 

cout << "Please enter the new age of the person : "; 

cin >> current->age; 

cout << "Please enter the new height of the person : "; 

cin >> current->height; 

 

The next easiest thing to do is to delete a node from the list directly after the current 

position. We have to use a temporary pointer to point to the node to be deleted. Once this 

node has been "anchored", the pointers to the remaining nodes can be readjusted before 

the node on death row is deleted. Here is the sequence of actions:  

1. Firstly, the temporary pointer is assigned to the node after the current one. This is 

the node to be deleted:  

 

 

 

 
NULL 

    

current temp 
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2. Now the pointer from the current node is made to leap-frog the next node and 

point to the one after that:  

 

 

 

 

3. The last step is to delete the node pointed to by temp.  

Here is the code for deleting the node. It includes a test at the start to test whether the 

current node is the last one in the list:  

if (current->nxt == NULL) 

     cout << "There is no node after current" << endl; 

else 

   { node *temp; 

     temp = current->nxt; 

     current->nxt = temp->nxt;     // Could be NULL 

     delete temp; 

   } 

Here is the code to add a node after the current one. This is done similarly, but we haven't 

illustrated it with diagrams:  

if (current->nxt == NULL) 

     add_node_at_end(); 

else 

   { node *temp; 

     new temp; 

     get_details(temp); 

     // Make the new node point to the same thing as 

     // the current node 

     temp->nxt = current->nxt; 

     // Make the current node point to the new link 

     // in the chain 

     current->nxt = temp; 

   } 

 

We have assumed that the function add_node_at_end() is the routine for adding the node to 

the end of the list that we created near the top of this section. This routine is called if the 

current pointer is the last one in the list so the new one would be added on to the end.  

 

Similarly, the routine get_temp(temp) is a routine that reads in the details for the new node 

similar to the one defined just above.  

NULL 
     

current temp 
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... and so ... 

3.2.6. Deleting a node from the list 
When it comes to deleting nodes, we have three choices: Delete a node from the start of 

the list, delete one from the end of the list, or delete one from somewhere in the middle. 

For simplicity, we shall just deal with deleting one from the start or from the end. 

 

When a node is deleted, the space that it took up should be reclaimed. Otherwise the 

computer will eventually run out of memory space. This is done with the delete 

instruction:  

 

delete temp;     // Release the memory pointed to by temp 

 

However, we can't just delete the nodes willy-nilly as it would break the chain. We need 

to reassign the pointers and then delete the node at the last moment. Here is how we go 

about deleting the first node in the linked list:  

 

temp = start_ptr; // Make the temporary pointer 

                  // identical to the start pointer 

 
Now that the first node has been safely tagged (so that we can refer to it even when the 

start pointer has been reassigned), we can move the start pointer to the next node in the 

chain:  

start_ptr = start_ptr->nxt;   // Second node in chain. 

 
delete temp;    // Wipe out original start node 
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Here is the function that deletes a node from the start:  

 

void delete_start_node() 

   { node *temp; 

     temp = start_ptr; 

     start_ptr = start_ptr->nxt; 

     delete temp; 

   } 

 

Deleting a node from the end of the list is harder, as the temporary pointer must find 

where the end of the list is by hopping along from the start. This is done using code that 

is almost identical to that used to insert a node at the end of the list. It is necessary to 

maintain two temporary pointers, temp1 and temp2. The pointer temp1 will point to the last 

node in the list and temp2 will point to the previous node. We have to keep track of both 

as it is necessary to delete the last node and immediately afterwards, to set the nxt pointer 

of the previous node to NULL (it is now the new last node).  

1. Look at the start pointer. If it is NULL, then the list is empty, so print out a "No 

nodes to delete" message.  

2. Make temp1 point to whatever the start pointer is pointing to.  

3. If the nxt pointer of what temp1 indicates is NULL, then we've found the last node 

of the list, so jump to step 7.  

4. Make another pointer, temp2, point to the current node in the list.  

5. Make temp1 point to the next item in the list.  

6. Go to step 3.  

7. If you get this far, then the temporary pointer, temp1, should point to the last item 

in the list and the other temporary pointer, temp2, should point to the last-but-one 

item.  

8. Delete the node pointed to by temp1.  

9. Mark the nxt pointer of the node pointed to by temp2 as NULL - it is the new last 

node.  

Let's try it with a rough drawing. This is always a good idea when you are trying to 

understand an abstract data type. Suppose we want to delete the last node from this list:  
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Firstly, the start pointer doesn't point to NULL, so we don't have to display a "Empty list, 

wise guy!" message. Let's get straight on with step2 - set the pointer temp1 to the same as 

the start pointer:  

 
 

The nxt pointer from this node isn't NULL, so we haven't found the end node. Instead, we 

set the pointer temp2 to the same node as temp1  

 
and then move temp1 to the next node in the list:  

 

Going back to step 3, we see that temp1 still doesn't point to the last node in the list, so 

we make temp2 point to what temp1 points to  
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and temp1 is made to point to the next node along:  

 

Eventually, this goes on until temp1 really is pointing to the last node in the list, with 

temp2 pointing to the penultimate node:  

 

 

 

 

 

Now we have reached step 8. The next thing to do is to delete the node pointed to by 
temp1  

 

    
NULL 

temp 2 temp1 

start_ptr 

    
NULL 

temp 2 temp1 

start_ptr 
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and set the nxt pointer of what temp2 indicates to NULL:  

 

We suppose you want some code for all that! All right then ....  

void delete_end_node() 

   { node *temp1, *temp2; 

     if (start_ptr == NULL) 

          cout << "The list is empty!" << endl; 

     else 

        { temp1 = start_ptr; 

          while (temp1->nxt != NULL) 

             { temp2 = temp1; 

               temp1 = temp1->nxt; 

             } 

          delete temp1; 

          temp2->nxt = NULL; 

        } 

   } 

The code seems a lot shorter than the explanation!  

 

Now, the sharp-witted amongst you will have spotted a problem. If the list only contains 

one node, the code above will malfunction. This is because the function goes as far as the 

temp1 = start_ptr statement, but never gets as far as setting up temp2. The code above has 

to be adapted so that if the first node is also the last (has a NULL nxt pointer), then it is 

deleted and the start_ptr pointer is assigned to NULL. In this case, there is no need for the 

pointer temp2:  

 

void delete_end_node() 

   { node *temp1, *temp2; 

     if (start_ptr == NULL) 

          cout << "The list is empty!" << endl; 

     else 

        { temp1 = start_ptr; 

          if (temp1->nxt == NULL)     // This part is new! 

             { delete temp1; 

               start_ptr = NULL; 

             } 
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          else 

        { while (temp1->nxt != NULL) 

                  { temp2 = temp1; 

                    temp1 = temp1->nxt; 

                  } 

               delete temp1; 

               temp2->nxt = NULL; 

             } 

        } 

   } 

3.3. Doubly Linked Lists 

That sounds even harder than a linked list! Well, if you've mastered how to do singly 

linked lists, then it shouldn't be much of a leap to doubly linked lists  

A doubly linked list is one where there are links from each node in both directions:  

 
 

You will notice that each node in the list has two pointers, one to the next node and one 

to the previous one - again, the ends of the list are defined by NULL pointers. Also there 

is no pointer to the start of the list. Instead, there is simply a pointer to some position in 

the list that can be moved left or right.  

 

The reason we needed a start pointer in the ordinary linked list is because, having moved 

on from one node to another, we can't easily move back, so without the start pointer, we 

would lose track of all the nodes in the list that we have already passed. With the doubly 

linked list, we can move the current pointer backwards and forwards at will.  

3.3.1. Creating Doubly Linked Lists 

The nodes for a doubly linked list would be defined as follows:  

struct node{ 

   char name[20]; 

   node *nxt;    // Pointer to next node 

   node *prv;    // Pointer to previous node 

 }; 
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node *current; 

current = new node; 

current->name = "Fred"; 

current->nxt = NULL; 

current->prv = NULL; 

We have also included some code to declare the first node and set its pointers to NULL. 

It gives the following situation:  

 
We still need to consider the directions 'forward' and 'backward', so in this case, we will 

need to define functions to add a node to the start of the list (left-most position) and the 

end of the list (right-most position). 

3.3.2. Adding a Node to a Doubly Linked List 

void add_node_at_start (string new_name) 

 { // Declare a temporary pointer and move it to the start 

   node *temp = current; 

   while (temp->prv != NULL) 

    temp = temp->prv; 

   // Declare a new node and link it in 

   node *temp2; 

   temp2 = new node; 

   temp2->name = new_name;  // Store the new name in the node 

   temp2->prv = NULL;       // This is the new start of the list 

   temp2->nxt = temp;       // Links to current list 

   temp->prv = temp2; 

 } 

 

void add_node_at_end () 

 { // Declare a temporary pointer and move it to the end 

   node *temp = current; 

   while (temp->nxt != NULL) 

    temp = temp->nxt; 

   // Declare a new node and link it in 

   node *temp2; 

   temp2 = new node; 

   temp2->name = new_name;  // Store the new name in the node 

   temp2->nxt = NULL;       // This is the new start of the list 
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   temp2->prv = temp;       // Links to current list 

   temp->nxt = temp2; 

 } 

Here, the new name is passed to the appropriate function as a parameter. We'll go through 

the function for adding a node to the right-most end of the list. The method is similar for 

adding a node at the other end. Firstly, a temporary pointer is set up and is made to march 

along the list until it points to last node in the list.  

 

Start_Ptr 

 

 

 

After that, a new node is declared, and the name is copied into it. The nxt pointer of this 

new node is set to NULL to indicate that this node will be the new end of the list.  

The prv pointer of the new node is linked into the last node of the existing list.  

The nxt pointer of the current end of the list is set to the new node.  

 

3.3.3. Deleting a Node From a Doubly Linked List 
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4. Stacks 

A simple data structure, in which insertion and deletion occur at the same end, is termed 

(called) a stack. It is a LIFO (Last In First Out) structure. 

 

The operations of insertion and deletion are called PUSH and POP 

Push - push (put) item onto stack 

Pop - pop (get) item from stack 
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TOS=>  

   

   

   
 

       

   

4  

1  

3  

6  
 

Our Purpose: 

To develop a stack implementation that does not tie us to a particular data type or to a 

particular implementation.  

 

Implementation: 

Stacks can be implemented both as an array (contiguous list) and as a linked list. We want a 

set of operations that will work with either type of implementation: i.e. the method of 

implementation is hidden and can be changed without affecting the programs that use them. 

 

 

The Basic Operations: 

 

Push()  
{  

if there is room {  

put an item on the top of the stack  

else  

give an error message  

}  

}  

   

 

Pop()  
{  

           if stack not empty {  
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                   return the value of the top item  

                   remove the top item from the stack  

                                          } 

           else {  

                   give an error message  

                   }  

}  

   

CreateStack()  
{  

remove existing items from the stack  

initialise the stack to empty  

}  

4.1. Array Implementation of Stacks: The PUSH operation 

Here, as you might have noticed, addition of an element is known as the PUSH operation. 

So, if an array is given to you, which is supposed to act as a STACK, you know that it 

has to be a STATIC Stack; meaning, data will overflow if you cross the upper limit of the 

array. So, keep this in mind.  

Algorithm: 

Step-1: Increment the Stack TOP by 1. Check whether it is always less than the Upper 

Limit of the stack. If it is less than the Upper Limit go to step-2 else report -"Stack 

Overflow" 

Step-2: Put the new element at the position pointed by the TOP 

Implementation: 

static int stack[UPPERLIMIT]; 

int top= -1; /*stack is empty*/ 

.. 

.. 

main() 

{ 

.. 

.. 

push(item); 

.. 

.. 

} 

push(int item) 

{ 
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      top = top + 1; 

      if(top < UPPERLIMIT)  

stack[top] = item; /*step-1 & 2*/ 

        else 

          cout<<"Stack Overflow";  

} 

Note:- In array implementation,we have taken TOP = -1 to signify the empty stack, as 

this simplifies the implementation. 

4.2. Array Implementation of Stacks: the POP operation 

POP is the synonym for delete when it comes to Stack. So, if you're taking an array as the 

stack, remember that you'll return an error message, "Stack underflow", if an attempt is 

made to Pop an item from an empty Stack. OK.  

Algorithm 

Step-1: If the Stack is empty then give the alert "Stack underflow" and quit; or else go to 

step-2 

Step-2: a) Hold the value for the element pointed by the TOP 

            b) Put a NULL value instead 

            c) Decrement the TOP by 1 

Implementation: 

static int stack[UPPPERLIMIT]; 

int top=-1; 

.. 

.. 

main() 

{ 

.. 

.. 

poped_val = pop(); 

.. 

.. 

} 

int pop() 

{ 

int del_val = 0; 

if(top == -1)  

cout<<"Stack underflow"; /*step-1*/ 

  else 

     { 
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      del_val = stack[top];  /*step-2*/ 

      stack[top] = NULL; 

      top = top -1; 

     }  

return(del_val); 

} 

Note: - Step-2:(b) signifies that the respective element has been deleted.  

 

4.3. Linked List Implementation of Stacks: the PUSH operation 

 

It‟s very similar to the insertion operation in a dynamic singly linked list. The only 

difference is that here you'll add the new element only at the end of the list, which means 

addition can happen only from the TOP. Since a dynamic list is used for the stack, the 

Stack is also dynamic, means it has no prior upper limit set. So, we don't have to check 

for the Overflow condition at all!  

 
In Step [1] we create the new element to be pushed to the Stack. 

In Step [2] the TOP most element is made to point to our newly created element. 

In Step [3] the TOP is moved and made to point to the last element in the stack, which is 

our newly added element. 

Algorithm 

Step-1: If the Stack is empty go to step-2 or else go to step-3 

Step-2: Create the new element and make your "stack" and "top" pointers point to it and 

quit. 

Step-3: Create the new element and make the last (top most) element of the stack to point 

to it 

Step-4: Make that new element your TOP most element by making the "top" pointer 

point to it. 

 

Implementation: 
struct node{ 
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     int item; 

     struct node *next; 

    } 

struct node *stack = NULL; /*stack is initially empty*/ 

struct node *top = stack; 

main() 

{ 

.. 

.. 

push(item); 

.. 

} 

push(int item) 

{ 

     if(stack == NULL)  /*step-1*/ 

       { 

        newnode = new node  /*step-2*/ 

        newnode -> item = item; 

        newnode -> next = NULL; 

        stack = newnode; 

        top = stack; 

       } 

     else 

       { 

        newnode = new node; /*step-3*/ 

        newnode -> item = item; 

        newnode -> next = NULL; 

        top ->next = newnode; 

        top = newnode;   /*step-4*/ 

       } 

} 

4.4. Linked List Implementation of Stacks: the POP Operation  

This is again very similar to the deletion operation in any Linked List, but you can only 

delete from the end of the list and only one at a time; and that makes it a stack. Here, 

we'll have a list pointer, "target", which will be pointing to the last but one element in the 

List (stack). Every time we POP, the TOP most element will be deleted and "target" will 

be made as the TOP most element.  
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In step[1] we got the "target" pointing to the last but 

one node. 

In step[2] we freed the TOP most element. 

In step[3] we made the "target" node as our TOP most 

element.  

Supposing you have only one element left in the Stack, 

then we won't make use of "target" rather we'll take 

help of our "bottom" pointer. See how... 

Algorithm: 

Step-1: If the Stack is empty then give an alert message "Stack Underflow" and quit; or 

else proceed 

Step-2: If there is only one element left go to step-3 or else step-4 

Step-3: Free that element and make the "stack", "top" and "bottom" pointers point to 

NULL and quit 

Step-4: Make "target" point to just one element before the TOP; free the TOP most 

element; make "target" as your TOP most element 
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Implementation: 
struct node 

{ 

 int nodeval; 

 struct node *next; 

} 

struct node *stack = NULL; /*stack is initially empty*/ 

struct node *top = stack; 

 

main() 

{ 

int newvalue, delval; 

.. 

push(newvalue); 

.. 

delval = pop();   /*POP returns the deleted value from the stack*/ 

} 

int pop( ) 

{ 

int pop_val = 0; 

struct node *target = stack; 

     if(stack == NULL)  /*step-1*/ 

      cout<<"Stack Underflow"; 

     else 

       { 

        if(top == bottom)  /*step-2*/ 

          { 

            pop_val = top -> nodeval;   /*step-3*/ 

          delete top; 

           stack = NULL; 

           top = bottom = stack; 

          } 

         else   /*step-4*/ 

          {  

           while(target->next != top) target = target ->next; 

           pop_val = top->nodeval; 

           delete top; 

           top = target; 

           target ->next = NULL;  

          }  

       } 

return(pop_val); 

} 
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4.5. Applications of Stacks 

4.5.1. Evaluation of Algebraic Expressions 
e.g. 4 + 5 * 5 

simple calculator: 45 

scientific calculator: 29 (correct) 

Question:  

Can we develop a method of evaluating arithmetic expressions without having to 

„look ahead‟ or „look back‟? ie consider the quadratic formula:  
x = (-b+(b^2-4*a*c)^0.5)/(2*a)  

where ^ is the power operator, or, as you may remember it : 

 
 

In it‟s current form we cannot solve the formula without considering the ordering of the 

parentheses. i.e. we solve the innermost parenthesis first and then work outwards also 

considering operator precedence. Although we do this naturally, consider developing an 

algorithm to do the same . . . . . . possible but complex and inefficient. Instead . . . .  

 

Re-expressing the Expression 

Computers solve arithmetic expressions by restructuring them so the order of each 

calculation is embedded in the expression. Once converted an expression can then be 

solved in one pass. 

Types of Expression 

The normal (or human) way of expressing mathematical expressions is called infix form, 

e.g. 4+5*5. However, there are other ways of representing the same expression, either by 

writing all operators before their operands or after them,  

e.g.: 4 5 5 * + 

+ 4 * 5 5 

This method is called Polish Notation (because this method was discovered by the Polish 

mathematician Jan Lukasiewicz). 
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When the operators are written before their operands, it is called the prefix form 

e.g. + 4 * 5 5 

When the operators come after their operands, it is called postfix form (suffix form or 

reverse polish notation) 

e.g. 4 5 5 * + 

 

The valuable aspect of RPN (Reverse Polish Notation or postfix ) 

 Parentheses are unnecessary 

   

 Easy for a computer (compiler) to evaluate an arithmetic expression 

Postfix (Reverse Polish Notation)  

Postfix notation arises from the concept of post-order traversal of an expression tree (see 

Weiss p. 93 - this concept will be covered when we look at trees). 

 

For now, consider postfix notation as a way of redistributing operators in an expression 

so that their operation is delayed until the correct time. 

 

Consider again the quadratic formula: 
x = (-b+(b^2-4*a*c)^0.5)/(2*a) 

In postfix form the formula becomes: 
x b @ b 2 ^ 4 a * c * - 0.5 ^ + 2 a * / = 

where @ represents the unary - operator. 

Notice the order of the operands remain the same but the operands are redistributed in a 

non-obvious way (an algorithm to convert infix to postfix can be derived).  

 

Purpose 

 

The reason for using postfix notation is that a fairly simple algorithm exists to evaluate 

such expressions based on using a stack. 

 

Postfix Evaluation 

 

Consider the postfix expression : 
6 5 2 3 + 8 * + 3 + * 
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Algorithm 

initialise stack to empty; 

while (not end of postfix expression) { 

   get next postfix item; 

   if(item is value) 

      push it onto the stack; 

   else if(item is binary operator) { 

      pop the stack to x; 

      pop the stack to y; 

      perform y operator x; 

      push the results onto the stack; 

   } else if (item is unary operator) { 

      pop the stack to x; 

      perform operator(x); 

      push the results onto the stack 

   } 

} 

The single value on the stack is the desired result. 

 

Binary operators: +, -, *, /, etc., 

 

Unary operators: unary minus, square root, sin, cos, exp, etc.,  

 

So for 6 5 2 3 + 8 * + 3 + * 

the first item is a value (6) so it is pushed onto the stack 

the next item is a value (5) so it is pushed onto the stack 

the next item is a value (2) so it is pushed onto the stack 

the next item is a value (3) so it is pushed onto the stack  

and the stack becomes 
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TOS=>  

       

       

       
 

       

3  

2  

5  

6  
 

the remaining items are now: + 8 * + 3 + * 

So next a '+' is read (a binary operator), so 3 and 2 are popped from the stack and their 

sum '5' is pushed onto the stack: 

       

       

TOS=>  

       

       
 

       

       

5  

5  

6  
 

Next 8 is pushed and the next item is the operator *: 

       

TOS=>  

       

       

       
 

       

8  

5  

5  

6  
 

             

       

       

TOS=>  

       

       
 

       

   

40  

5  

6  
 

             

(8, 5 popped, 40 pushed)  

Next the operator + followed by 3: 

       

       

       

TOS=>  

       
 

       

   

   

45  

6  
 

             

       

       

TOS=>  

       

       
 

       

   

3  

45  

6  
 

             

(40, 5 popped, 45 pushed, 3 pushed)  

Next is operator +, so 3 and 45 are popped and 45+3=48 is pushed 
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TOS=>  

       
 

       

48  

6  
 

Next is operator *, so 48 and 6 are popped, and 6*48=288 is pushed 

       

       

       

       

TOS=>  
 

       

       

       

       

288  
 

  

Now there are no more items and there is a single value on the stack, representing the 

final answer 288. 

Note the answer was found with a single traversal of the postfix expression, with the 

stack being used as a kind of memory storing values that are waiting for their operands. 

 

4.5.2. Infix to Postfix (RPN) Conversion 

Of course postfix notation is of little use unless there is an easy method to 

convert standard (infix) expressions to postfix. Again a simple algorithm exists 

that uses a stack:  

Algorithm 

initialise stack and postfix output to empty; 

while(not end of infix expression) { 

   get next infix item 

   if(item is value) append item to pfix o/p 

   else if(item == ‘(‘) push item onto stack 

   else if(item == ‘)’) { 

      pop stack to x 

      while(x != ‘(‘) 

         app.x to pfix o/p & pop stack to x 

   } else { 
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      while(precedence(stack top) >= precedence(item)) 

         pop stack to x & app.x to pfix o/p 

      push item onto stack 

   } 

} 

while(stack not empty) 

   pop stack to x and append x to pfix o/p 

 

Operator Precedence (for this algorithm): 

4 : ‘(‘ - only popped if a matching ‘)’ is found 

3 : All unary operators 

2 : / * 

1 : + - 

The algorithm immediately passes values (operands) to the postfix expression, 

but remembers (saves) operators on the stack until their right-hand operands are 

fully translated.  
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eg., consider the infix expression a+b*c+(d*e+f)*g 

Stack  Output  

   

TOS=>  
 

       

+  
 

ab  

   

TOS=>  

   
 

       

*  

+  
 

abc  

   

TOS=>  
 

       

+  
 

abc*+  

   

TOS=>  

   

   
 

       

 *  

(  

+  
 

abc*+de  

   

TOS=>  

   

   
 

       

 +  

(  

+  
 

abc*+de*f  

   

 

TOS=>  
 

       

+  
 

abc*+de*f+  

   

TOS=>  

       

*  
abc*+de*f+g  
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+  
 

empty  
 

       
 

abc*+de*f+g*+  
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4.5.3. Function Calls 
When a function is called, arguments (including the return address) have to be passed to 

the called function.  

If these arguments are stored in a fixed memory area then the function cannot be called 

recursively since the 1st return address would be overwritten by the 2nd return address 

before the first was used: 
10 call function abc(); /* retadrs = 11 */ 

11 continue; 

   ... 

90 function abc; 

91 code; 

92 if (expression) 

93    call function abc(); /* retadrs = 94 */ 

94 code 

95 return /* to retadrs */ 

A stack allows a new instance of retadrs for each call to the function. Recursive calls on 

the function are limited only by the extent of the stack. 
10 call function abc(); /* retadrs1 = 11 */ 

11 continue; 

   ... 

90 function abc; 

91 code; 

92 if (expression) 

93    call function abc(); /* retadrs2 = 94 */ 

94 code 

95 return /* to retadrsn */ 
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5.Queue 

 

 a data structure that has access to its data at the front and rear.  

 operates on FIFO (Fast In First Out) basis. 

 uses two pointers/indices to keep tack of information/data. 

 has two basic operations: 

o enqueue - inserting data at the rear of the queue 

o dequeue – removing data at the front of the queue     

 

 

 

 

 

 

 

 

 

Example:   

    

Operation Content of queue 

Enqueue(B) B 

Enqueue(C) B, C 

Dequeue() C 

Enqueue(G) C, G 

Enqueue (F) C, G, F 

Dequeue() G, F 

Enqueue(A) G, F, A 

Dequeue() F, A 

 

 

5.1. Simple array implementation of enqueue and dequeue operations 

 

Analysis: 

 Consider the following structure:  int Num[MAX_SIZE]; 

 We need to have two integer variables that tell: 

- the index of the front element 

- the index of the rear element 

 We also need an integer variable that tells: 

  - the total number of data in the queue 

 

int FRONT =-1,REAR =-1;  

Front Rear 

dequeue enqueue 
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int QUEUESIZE=0; 
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 To enqueue data to the queue 

o check if there is space in the queue 

REAR<MAX_SIZE-1 ? 

Yes:  - Increment REAR 

 - Store the data in Num[REAR] 

 - Increment QUEUESIZE 

    FRONT = = -1? 

          Yes: - Increment FRONT 

No:  - Queue Overflow 

  To dequeue data from the queue 

o check if there is data in the queue 

QUEUESIZE > 0 ? 

Yes:  - Copy the data in Num[FRONT] 

 - Increment FRONT 

 - Decrement QUEUESIZE 

No:  - Queue Underflow 

 

Implementation: 

const int MAX_SIZE=100; 

int FRONT =-1, REAR =-1; 

int QUEUESIZE = 0; 

  
 void enqueue(int x) 

 { 

  if(Rear<MAX_SIZE-1)    

  { 

   REAR++; 

   Num[REAR]=x; 

   QUEUESIZE++; 

   if(FRONT = = -1) 

    FRONT++; 

  } 

  else 

   cout<<"Queue Overflow"; 

 } 

 int dequeue() 

 { 

  int x; 

  if(QUEUESIZE>0)    

  { 

   x=Num[FRONT]; 

                         if(FRONT= = ) 

   FRONT++; 

   QUEUESIZE--; 

 

  } 

  else 

   cout<<"Queue Underflow"; 

  return(x); 
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 } 

5.2. Circular array implementation of enqueue and dequeue operations 

 

A problem with simple arrays is we run out of space even if the queue never reaches the 

size of the array. Thus, simulated circular arrays (in which freed spaces are re-used to 

store data) can be used to solve this problem. 

  

Example:  Consider a queue with MAX_SIZE = 4 

    

Operation 

Simple array Circular array 

Content of 

the array 

Content of 

the Queue 

QUEUE 

SIZE 

Message Content of 

the array 

Content of 

the queue 

QUEUE

SIZE 

Message 

Enqueue(B) B    B 1  B    B 1  

Enqueue(C) B C   BC 2  B C   BC 2  

Dequeue()  C   C 1   C   C 1  

Enqueue(G)  C G  CG 2   C G  CG 2  

Enqueue (F)  C G F CGF 3   C G F CGF 3  

Dequeue()   G F GF 2    G F GF 2  

Enqueue(A)   G F GF 2 Overflow A  G F GFA 3  

Enqueue(D)   G F GF 2 Overflow A D G F GFAD 4  

Enqueue(C)   G F GF 2 Overflow A D G F GFAD 4 Overflow 

Dequeue()    F F 1  A D  F FAD 3  

Enqueue(H)    F F 1 Overflow A D H F FADH 4  

Dequeue ()     Empty 0  A D H  ADH 3  

Dequeue()     Empty 0 Underflow  D H  DH 2  

Dequeue()     Empty 0 Underflow   H  H 1  

Dequeue()     Empty 0 Underflow     Empty 0  

Dequeue()     Empty 0 Underflow     Empty 0 Underflow 

 

The circular array implementation of a queue with MAX_SIZE can be simulated as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis: 

 Consider the following structure:  int Num[MAX_SIZE]; 

 We need to have two integer variables that tell: 

0 

1 

2 
3 4 

5 

6 

7 

8 

9 

10 

11 12 
13 

MAX_SIZE - 1 
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- the index of the front element 

- the index of the rear element 

 We also need an integer variable that tells: 

  - the total number of data in the queue 

int FRONT =-1,REAR =-1;  

int QUEUESIZE=0; 

 

 To enqueue data to the queue 

o check if there is space in the queue 

QUEUESIZE<MAX_SIZE ? 

Yes:  - Increment REAR 

  REAR = = MAX_SIZE ? 

   Yes:    REAR = 0  

 - Store the data in Num[REAR] 

 - Increment QUEUESIZE 

    FRONT = = -1? 

       Yes: - Increment FRONT 

No:  - Queue Overflow 

 

  To dequeue data from the queue 

o check if there is data in the queue 

QUEUESIZE > 0 ? 

Yes:  - Copy the data in Num[FRONT] 

 - Increment FRONT 

  FRONT = = MAX_SIZE ? 

   Yes: FRONT = 0 

 - Decrement QUEUESIZE 

No:  - Queue Underflow 

 

Implementation: 

const int MAX_SIZE=100; 

int FRONT =-1, REAR =-1; 

int QUEUESIZE = 0; 

  
 void enqueue(int x) 

 { 

  if(QUEUESIZE<MAX_SIZE)    

  { 

   if(REAR = = MAX_SIZE) 

             REAR=0; 

                          else  

                                       REAR++; 

 

   Num[REAR]=x; 

   QUEUESIZE++; 

   if(FRONT = = -1) 

    FRONT++; 
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  } 

  else 

   cout<<"Queue Overflow"; 

 } 

 int dequeue() 

 { 

  int x; 

  if(QUEUESIZE>0)    

  { 

   x=Num[FRONT]; 

   if(FRONT = = MAX_SIZE) 

    FRONT = 0; 

                         else 

                               FRONT++; 

 

   QUEUESIZE--; 

 

  } 

  else 

   cout<<"Queue Underflow"; 

  return(x); 

 } 

 

5.3. Linked list implementation of enqueue and dequeue operations 

Enqueue- is inserting a node at the end of a linked list 

Dequeue- is deleting the first node in the list 

5.4. Deque (pronounced as Deck) 

- is a Double Ended Queue 

- insertion and deletion can occur at either end 

- has the following basic operations 

  EnqueueFront – inserts data at the front of the list  

  DequeueFront – deletes data at the front of the list 

  EnqueueRear – inserts data at the end of the list 

  DequeueRear – deletes data at the end of the list 

- implementation is similar to that of queue 

- is best implemented using doubly linked list 

 

 

 

 

 

 

 

 
DequeueFront EnqueueRear DequeueRear EnqueueFront 

Front Rear 
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5.5. Priority Queue 

- is a queue where each data has an associated key that is provided at the time of 

insertion. 

- Dequeue operation deletes data having highest priority in the list 

- One of the previously used dequeue or enqueue operations has to be modified 

 

Example:  Consider the following queue of persons where females have higher 

priority than males (gender is the key to give priority). 

 

 

 

 

Dequeue()- deletes Aster 

 

 

 

Dequeue()- deletes Meron 

 

 

  

Now the queue has data having equal priority and dequeue operation deletes the 

front element like in the case of ordinary queues. 

 

Dequeue()- deletes Abebe 

 

 

 

Dequeue()- deletes Alemu 

 

 

 

 

Thus, in the above example the implementation of the dequeue operation need to be 

modified. 

 

5.5.1. Demerging Queues 
-  is the process of creating two or more queues from a single queue. 

- used to give priority for some groups of data 

 

Example: The following two queues can be created from the above priority queue. 

 

 

 

 

Abebe Alemu Belay Kedir Meron Yonas 
Male Male Male Male Female Male 

Abebe Alemu Aster Belay Kedir Meron Yonas 
Male Male Female Male Male Female Male 

Abebe Alemu Belay Kedir Yonas  
Male Male Male Male Male 

Alemu Belay Kedir Yonas 

 Male Male Male Male 

Belay Kedir Yonas 
Male Male Male 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 
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Algorithm: 

 create empty females and males queue 

 while (PriorityQueue is not empty) 

 { 

  Data=DequeuePriorityQueue(); // delete data at the front  

  if(gender of Data is Female) 

   EnqueueFemale(Data); 

  else 

   EnqueueMale(Data); 

}  

 

5.5.2. Merging Queues 
- is the process of creating a priority queue from two or more queues. 

- the ordinary dequeue implementation can be used to delete data in the newly 

created priority queue.  

 

Example:  The following two queues (females queue has higher priority than the 

males queue) can be merged to create a priority queue. 

 

 

 

 

 

 

 

Algorithm: 

 

 create an empty priority queue 

 while(FemalesQueue is not empty) 

  EnqueuePriorityQueue(DequeueFemalesQueue()); 

 while(MalesQueue is not empty) 

  EnqueuePriorityQueue(DequeueMalesQueue()); 

 

It is also possible to merge two or more priority queues. 

Example:  Consider the following priority queues and suppose large numbers 

represent high priorities. 

 

 

 

 

 

 

 Thus, the two queues can be merged to give the following priority queue. 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 

ABC CDE 
52 41 

DEF FGH 
35 16 

HIJ 
12 

BCD EFG 
47 32 

GHI IJK 
13 10 

JKL 
7 
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5.6. Application of Queues 

i. Print server- maintains a queue of print jobs 

Print() 

{ 

 EnqueuePrintQueue(Document) 

} 

EndOfPrint() 

{ 

 DequeuePrintQueue() 

} 

 

ii. Disk Driver- maintains a queue of disk input/output requests 

 

iii. Task scheduler in multiprocessing system- maintains priority queues of 

processes 

 

iv. Telephone calls in a busy environment –maintains a queue of telephone calls 

 

v. Simulation of waiting line- maintains a queue of persons  

6. Trees 

 

A tree is a set of nodes and edges that connect pairs of nodes that connect pairs of 

nodes. It is an abstract model of a hierarchical structure. Rooted tree has the following 

structure: 

 One node distinguished as root. 

 Every node C except the root is connected from exactly other node P. P is C's 

parent, and C is one of P's children. 

 There is a unique path from the root to the each node. 

 The number of edges in a path is the length of the path. 

 

6.1. Tree Terminologies 

 

Consider the following tree. 

 

 

 

 

ABC BCD 
52 47 

CDE DEF 
41 35 

EFG 
32 

FGH GHI 
16 13 

HIJ IJK 
12 10 

JKL 
7 

A 

B E G F 

D C J H I 



 65 

 

 

 

 

 

 

 

 

 

Root: a node with out a parent.  A 

Internal node: a node with at least one child. A, B, F, I, J 

External (leaf) node:  a node without a child.  C, D, E, H, K, L, M, G 

Ancestors of a node: parent, grandparent, grand-grandparent, etc of a node.  

Ancestors of K  A, F, I 

Descendants of a node: children, grandchildren, grand-grandchildren etc of a node. 

Descendants of F  H, I, J, K, L, M 

Depth of a node: number of ancestors or length of the path from the root to the node. 

Depth of H   2 

Height of a tree: depth of the deepest node.  3 

Subtree: a tree consisting of a node and its descendants. 

  

 

 

 

    

 

 

 

 

 

Binary tree: a tree in which each node has at most two children called left child and right 

child. 

 

 

 

 

 

 

 

 

 

 

Full binary tree: a binary tree where each node has either 0 or 2 children. 
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Balanced binary tree: a binary tree where each node except the leaf nodes has left and 

right children and all the leaves are at the same level. 

 

Balanced binary tree: a binary tree where each node except the leaf nodes has left and 

right children and all the leaves are at the same level. 

 

 

 

 

 

 

Complete binary tree:  a binary tree in which the length from the root to any leaf node is 

either h or h-1 where h is the height of the tree. The deepest level 

should also be filled from left to right. 
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Binary search tree (ordered binary tree):  a binary tree that may be empty, but if it is not 

empty it satisfies the following. 

 Every node has a key and no two elements have the same key. 

 The keys in the right subtree are larger than the keys in the root. 

 The keys in the left subtree are smaller than the keys in the root. 

 The left and the right subtrees are also binary search trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Data Structure of a Binary Tree 

 

struct DataModel 

{ 

 Declaration of data fields 

 DataModel * Left, *Right; 

}; 

DataModel *RootDataModelPtr=NULL; 
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6.3. Operations on Binary Search Tree 

 

Consider the following definition of binary search tree. 

struct Node 

{ 

 int Num; 

 Node * Left, *Right; 

}; 

Node *RootNodePtr=NULL; 

 

6.3.1. Insertion 
When a node is inserted the definition of binary search tree should be preserved. 

Suppose there is a binary search tree whose root node is pointed by RootNodePtr and 

we want to insert a node (that stores 17) pointed by InsNodePtr.  

 

Case 1:  There is no data in the tree (i.e. RootNodePtr is NULL) 

- The node pointed by InsNodePtr should be made the root node. 

 

 

 

 

 

 

Case 2:  There is data 

   - Search the appropriate position.  

   - Insert the node in that position. 
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16 

13 17 

InsertBST(RootNodePtr, InsNodePtr)   

 

Function call: 

if(RootNodePtr = = NULL) 

 RootNodePtr=InsNodePtr; 

else 

 InsertBST(RootNodePtr, InsNodePtr); 
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Implementation:  

 
void InsertBST(Node *RNP, Node *INP) 
{ 
 //RNP=RootNodePtr and INP=InsNodePtr 
 int Inserted=0; 
 while(Inserted = =0) 
 { 
  if(RNP->Num > INP->Num) 
  { 
   if(RNP->Left = = NULL) 
   { 
    RNP->Left = INP; 
    Inserted=1; 
   } 
   else 
    RNP = RNP->Left; 
  } 
  else  
  { 
   if(RNP->Right = = NULL) 
   { 
    RNP->Right = INP; 
    Inserted=1; 
   } 
   else 
    RNP = RNP->Right; 
  } 

} 
} 
 

A recursive version of the function can also be given as follows. 
 
void InsertBST(Node *RNP, Node *INP) 
{ 
  if(RNP->Num>INP->Num) 
  { 
   if(RNP->Left==NULL) 
    RNP->Left = INP; 
   else 
    InsertBST(RNP->Left, INP); 
  } 
  else  
  { 
   if(RNP->Right==NULL) 
    RNP->Right = INP; 
   else 
    InsertBST(RNP->Right, INP); 
  } 
} 
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6.3.2. Traversing 
Binary search tree can be traversed in three ways. 

a. Pre order traversal - traversing binary tree in the order of parent, left and right. 

b. Inorder traversal - traversing binary tree in the order of left, parent and right. 

c. Postorder traversal - traversing binary tree in the order of left, right and parent. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preorder traversal:  10, 6, 4, 8, 7, 15, 14, 12, 11, 13, 18, 16, 17, 19 

Inorder traversal:     4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 

    ==> Used to display nodes in ascending order. 

Postorder traversal:  4, 7, 8, 6, 11, 13, 12, 14, 17, 16, 19, 18, 15, 10  

 

6.3.3. Application of binary tree traversal 
 

Store values on leaf nodes and operators on internal nodes 

  Preorder traversal: - used to generate mathematical expression in prefix notation. 

  Inorder traversal: - used to generate mathematical expression in infix notation. 

  Postorder traversal: - used to generate mathematical expression in postfix notation. 

 

Example: 
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+ 

– 

B 

+ 

* A / D 

C F E 

Preorder traversal:         + – A * B C + D / E F  Prefix notation 

Inorder traversal:       A – B * C + D + E / F  Infix notation 

Postorder traversal:   A B C * – D E F / + +  Postfix notation 
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Function calls: 

  Preorder(RootNodePtr); 

  Inorder(RootNodePtr); 

  Postorder(RootNodePtr); 

 

Implementation:  

 

void Preorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

  Preorder(CurrNodePtr->Left); 

  Preorder(CurrNodePtr->Right); 

 } 

} 

 

void Inorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  Inorder(CurrNodePtr->Left); 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

  Inorder(CurrNodePtr->Right); 

 } 

} 

 

void Postorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  Postorder(CurrNodePtr->Left); 

  Postorder(CurrNodePtr->Right); 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

 } 

} 
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6.3.4. Searching 
 

To search a node (whose Num value is Number) in a binary search tree (whose root 

node is pointed by RootNodePtr), one of the three traversal methods can be used. 

 

Function call:  

ElementExists = SearchBST (RootNodePtr, Number); 

 // ElementExists is a Boolean variable defined as: bool ElementExists = false; 

 

Implementation:  

 

bool SearchBST (Node *RNP, int x) 

{ 

 if(RNP = = NULL) 

  return(false); 

 else if(RNP->Num = = x) 

  return(true);   

 else if(RNP->Num > x) 

  return(SearchBST(RNP->Left, x)); 

 else 

  return(SearchBST(RNP->Right, x)); 

} 

 

When we search an element in a binary search tree, sometimes it may be necessary 

for the SearchBST function to return a pointer that points to the node containing the 

element searched. Accordingly, the function has to be modified as follows. 

 

Function call:  

SearchedNodePtr = SearchBST (RootNodePtr, Number); 

 // SearchedNodePtr is a pointer variable defined as: Node 

*SearchedNodePtr=NULL; 

 

Implementation:  

 

Node *SearchBST (Node *RNP, int x) 

{ 

 if((RNP = = NULL) || (RNP->Num = = x)) 

  return(RNP); 

 else if(RNP->Num > x) 

  return(SearchBST(RNP->Left, x)); 

 else 

  return(SearchBST (RNP->Right, x)); 

} 
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6.3.5. Deletion 
 

To delete a node (whose Num value is N) from binary search tree (whose root node is 

pointed by RootNodePtr), four cases should be considered. When a node is deleted 

the definition of binary search tree should be preserved. 

 

Consider the following binary search tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1:  Deleting a leaf node (a node having no child), e.g. 7 
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Delete 7   
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Case 2:  Deleting a node having only one child, e.g. 2 

 

Approach 1:  Deletion by merging – one of the following is done 

 

 If the deleted node is the left child of its parent and the deleted node has only the left 

child, the left child of the deleted node is made the left child of the parent of the 

deleted node.     

 If the deleted node is the left child of its parent and the deleted node has only the right 

child, the right child of the deleted node is made the left child of the parent of the 

deleted node.     

 If the deleted node is the right child of its parent and the node to be deleted has only 

the left child, the left child of the deleted node is made the right child of the parent of 

the deleted node.     

 If the deleted node is the right child of its parent and the deleted node has only the 

right child, the right child of the deleted node is made the right child of the parent of 

the deleted node.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in 

the right) to the node containing the element to be deleted 

 Delete the copied node 
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Case 3:  Deleting a node having two children, e.g. 6 

 

Approach 1:  Deletion by merging – one of the following is done 

 If the deleted node is the left child of its parent, one of the following is done 

o The left child of the deleted node is made the left child of the parent of the deleted 

node, and 

o The right child of the deleted node is made the right child of the node containing 

largest element in the left of the deleted node  

OR 

o The right child of the deleted node is made the left child of the parent of the 

deleted node, and 

o The left child of the deleted node is made the left child of the node containing 

smallest element in the right of the deleted node  

 

 If the deleted node is the right child of its parent, one of the following is done 

o The left child of the deleted node is made the right child of the parent of the 

deleted node, and 

o The right child of the deleted node is made the right child of the node containing 

largest element in the left of the deleted node  

OR 

o The right child of the deleted node is made the right child of the parent of the 

deleted node, and 

o The left child of the deleted node is made the left child of the node containing 

smallest element in the right of the deleted node  
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Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in 

the right) to the node containing the element to be deleted 

 Delete the copied node 

 

 

 

 

 

 

Delete 6  

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

 

RootNodePtr 

10 

7 

14 

8 

3 

18 12 

19 11 16 
13 

17 

9 

4 2 

1 

15 

5 

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

 

RootNodePtr 

10 

5 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 

Delete 6  

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

Delete 6  

 

RootNodePtr 

10 

7 14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 



 77 

Case 4:  Deleting the root node, 10 

Approach 1: Deletion by merging- one of the following is done 

 

 If the tree has only one node the root node pointer is made to point to nothing 

(NULL) 

 If the root node has left child  

o the root node pointer is made to point to the left child  

o the right child of the root node is made the right child of the node containing the 

largest element in the left of the root node 

 If root node has right child  

o the root node pointer is made to point to the right child  

o the left child of the root node is made the left child of the node containing the 

smallest element in the right of the root node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

 

RootNodePtr 
 

RootNodePtr 

6 

7 

14 

8 3 

18 12 

19 11 16 
13 

17 

9 4 2 

1 

15 

5 

Delete 10  

Delete 10  6 

7 

14 

8 3 

18 12 

19 11 16 
13 

17 

9 4 2 

1 

15 

5 

 

RootNodePtr 

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

 

RootNodePtr 



 78 

 

Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in 

the right) to the node containing the element to be deleted 

 Delete the copied node 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function call:  
if ((RootNodePtr->Left==NULL)&&( RootNodePtr->Right==NULL) && (RootNodePtr-

>Num==N)) 

{   // the node to be deleted is the root node having no child 

RootNodePtr=NULL; 

delete RootNodePtr; 

} 

else 

Delete 10  
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DeleteBST(RootNodePtr, RootNodePtr, N); 

 

Implementation: (Deletion by copying) 

 

void DeleteBST(Node *RNP, Node *PDNP, int x) 

{ 
 Node *DNP; // a pointer that points to the currently deleted node 
 // PDNP is a pointer that points to the parent node of currently deleted node 
 if(RNP==NULL) 
  cout<<"Data not found\n"; 
 else if (RNP->Num>x)  
  DeleteBST(RNP->Left, RNP, x);// delete the element in the left subtree 
 else if(RNP->Num<x) 
  DeleteBST(RNP->Right, RNP, x);// delete the element in the right subtree 
 else 
 { 
  DNP=RNP; 
  if((DNP->Left==NULL) && (DNP->Right==NULL)) 
  { 
   if (PDNP->Left==DNP) 
    PDNP->Left=NULL; 
   else 
    PDNP->Right=NULL; 
   delete DNP; 
  } 
  else 
  { 
   if(DNP->Left!=NULL) //find the maximum in the left 
   { 
    PDNP=DNP; 
    DNP=DNP->Left; 
    while(DNP->Right!=NULL) 
    { 
     PDNP=DNP; 
     DNP=DNP->Right; 
    } 
    RNP->Num=DNP->Num; 
    DeleteBST(DNP,PDNP,DNP->Num); 
   } 
   else //find the minimum in the right 
   { 
    PDNP=DNP; 
    DNP=DNP->Right; 
    while(DNP->Left!=NULL) 
    { 
     PDNP=DNP; 
     DNP=DNP->Left; 
    } 
    RNP->Num=DNP->Num; 
    DeleteBST(DNP,PDNP,DNP->Num); 
   } 
  } 
 } 
} 
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7. Advanced Sorting and Searching Algorithms 

 

7.1. Shell Sort  

 

Shell sort is an improvement of insertion sort. It is developed by Donald Shell in 1959. 

Insertion sort works best when the array elements are sorted in a reasonable order. Thus, 

shell sort first creates this reasonable order. 

 

Algorithm: 

1. Choose gap gk between elements to be partly ordered. 

2. Generate a sequence (called increment sequence) gk, gk-1,…., g2, g1 where for 

each sequence gi, A[j]<=A[j+gi] for 0<=j<=n-1-gi and k>=i>=1 

 

It is advisable to choose gk =n/2 and gi-1 = gi/2 for k>=i>=1. After each sequence gk-1 is 

done and the list is said to be gi-sorted. Shell sorting is done when the list is 1-sorted 

(which is sorted using insertion sort) and A[j]<=A[j+1] for 0<=j<=n-2. Time complexity 

is O(n
3/2

). 

 

Example: Sort the following list using shell sort algorithm.  

 

 5 8 2 4 1 3 9 7 6 0 

 

Choose g3 =5 (n/2 where n is the number of elements =10) 

 

Sort (5, 3) 3 8 2 4 1 5 9 7 6 0 

Sort (8, 9) 3 8 2 4 1 5 9 7 6 0 

Sort (2, 7) 3 8 2 4 1 5 9 7 6 0 

Sort (4, 6) 3 8 2 4 1 5 9 7 6 0 

Sort (1, 0)  3 8 2 4 0 5 9 7 6 1 

 5- sorted list 3 8 2 4 0 5 9 7 6 1 

 

Choose g2 =3  

 

Sort (3, 4, 9, 1) 1 8 2 3 0 5 4 7 6 9 

Sort (8, 0, 7) 1 0 2 3 7 5 4 8 6 9 

Sort (2, 5, 6) 1 0 2 3 7 5 4 8 6 9 

 3- sorted list 1 0 2 3 7 5 4 8 6 9 

 

Choose g1 =1 (the same as insertion sort algorithm) 

 

Sort (1, 0, 2, 3, 7, 5, 4, 8, 6, 9) 0 1 2 3 4 5 6 7 8 9 



 81 

 1- sorted (shell sorted) list  0 1 2 3 4 5 6 7 8 9 

 

7.2. Quick Sort  

 

Quick sort is the fastest known algorithm. It uses divide and conquer strategy and in the 

worst case its complexity is O (n2). But its expected complexity is O(nlogn). 

 

Algorithm: 

1. Choose a pivot value (mostly the first element is taken as the pivot value)  

2. Position the pivot element and partition the list so that: 

 the left part has items less than or equal to the pivot value 

 the right part has items greater than or equal to the pivot value 

3. Recursively sort the left part 

4. Recursively sort the right part 

 

The following algorithm can be used to position a pivot value and create partition. 

 

Left=0; 

Right=n-1; // n is the total number of elements in the list 

PivotPos=Left; 
while(Left<Right) 

{ 

 if(PivotPos==Left) 

 { 

  if(Data[Left]>Data[Right]) 

  { 

   swap(data[Left], Data[Right]); 

   PivotPos=Right; 

   Left++; 

  } 

  else 

   Right--; 

 } 

 else 

 { 

  if(Data[Left]>Data[Right]) 

  { 

   swap(data[Left], Data[Right]); 

   PivotPos=Left; 

   Right--; 

  } 

  else 

   Left++; 

 } 

} 
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5 8 2 4 1 3 9 7 6 0 

Example:  Sort the following list using 

quick sort algorithm.  

 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

Pivot 

Left Right 

5 8 2 4 1 3 9 7 6 0 

Pivot 

Left Right 

0 8 2 4 1 3 9 7 6 5 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

9 7 6 8 

Left 
Pivot 

Right 

8 7 6 9 

Left 
Pivot 
Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

8 7 6 9 

Left 
Pivot 
Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

8 7 6 9 

Left 
Pivot 

Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

6 7 8 9 

Left 
Pivot 
Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

6 7 8 9 

Left 
Pivot 

Right Right 

5 

Pivot 
Left 

0 1 2 4 3 

Right 

6 7 8 9 5 

Pivot 
Left 

0 1 2 4 3 

Right 

6 7 8 9 5 

Pivot 
Left 

0 1 2 3 4 

Right 

6 7 8 9 5 

Pivot 
Left 

0 1 2 3 4 

Right 

6 7 8 9 5 0 1 2 3 4 
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7.3. Heap Sort  

 

Heap sort operates by first converting the list in to a heap tree. Heap tree is a binary tree 

in which each node has a value greater than both its children (if any). It uses a process 

called "adjust to accomplish its task (building a heap tree) whenever a value is larger than 

its parent. The time complexity of heap sort is O(nlogn). 

 

Algorithm: 

1. Construct a binary tree  

 The root node corresponds to Data[0]. 

 If we consider the index associated with a particular node to 

be i, then the left child of this node corresponds to the element with index 

2*i+1 and the right child corresponds to the element with index 2*i+2. If any 

or both of these elements do not exist in the array, then the corresponding 

child node does not exist either. 

2. Construct the heap tree from initial binary tree using "adjust" process.  

3. Sort by swapping the root value with the lowest, right most value and deleting the 

lowest, right most value and inserting the deleted value in the array in it proper 

position. 

 

Example:  Sort the following list using heap sort algorithm. 

 

5 8 2 4 1 3 9 7 6 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swap the root node with the lowest, right most node and delete the lowest, right most 

value; insert the deleted value in the array in its proper position; adjust the heap tree; 

and repeat this process until the tree is empty. 
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7.4. Merge Sort  

 

Like quick sort, merge sort uses divide and conquer strategy and its time complexity is 

O(nlogn). 

 

Algorithm: 

1. Divide the array in to two halves. 

2. Recursively sort the first n/2 items. 

3. Recursively sort the last n/2 items. 

4. Merge sorted items (using an auxiliary array). 

 

Example:  Sort the following list using merge sort algorithm.  

 

5 8 2 4 1 3 9 7 6 0 

 

 
5 8 2 4 1 3 9 7 6 0 

5 8 2 4 1 3 9 7 6 0 

5 8 2 4 1 3 9 7 6 0 

5 8 2 4 1 3 9 7 6 0 

4 1 6 0 

1 4 

5 8 1 2 4 3 9 0 6 7 

0 6 

1 2 4 5 8 0 3 6 7 9 

0 1 2 3 4 5 6 7 8 9 

Division phase 

Sorting and merging phase 
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